Transfer Learning Model Evaluation on CNN Algorithm: Indonesian Sign Language System (SIBI)
Abstract
In Indonesia as much as elsewhere, the deaf can communicate using sign language. The Indonesian Sign Language System (SIBI) is one of the sign language systems used in Indonesia. A model produced by the Convolutional Neural Network (CNN) method can be used in computer science for the recognition of sign language. By using the Transfer Learning paradigm, CNN's performance may be enhanced. However, not many researches have been conducted to assess the effectiveness of transfer learning on sign language models, particularly those that use the TensorFlow library. In fact, the evaluation results can influence the selection of the transfer learning model together with CNN. This study aims to evaluate the efficacy of using the CNN model for SIBI sign language through Transfer Learning. The data used are images of 24 SIBI alphabets and are processed through the TensorFlow library. The images will be recognized through the transfer learning performance of 6 models, namely VGG16, VGG19, Resnet50, Desenet121, Inception-V3 and MobileNet-V2. The results of the study found that through the TensorFlow library, Mobilenetv2 had the highest accuracy of 78% after 20 epochs.
References
Abraham, T. S., Sachin Raj, S. P., Yaamini, A., & Divya, B. (2022). Transfer learning approaches in deep learning for Indian sign language classification. Journal of Physics: Conference Series CBSII-2022, 2318(1), 9. https://doi.org/10.1088/1742-6596/2318/1/012041
Abu-Jamie, T. N., Samy, P., & Abu-Naser, S. (2022). Classification of Sign-Language Using MobileNet-Deep Learning. International Journal of Academic Information Systems Research, 6(7), 29–40.
Agangiba, M., M., E., A., W., & Appiah, O. (2023). Performance Evaluation of Resnet Model on Sign Language Recognition. International Journal of Computer Applications, 184(43), 22–27. https://doi.org/10.5120/ijca2023922534
Angelyn, J., & Putri, R. N. (2021). Diagnosis System Design of Depression and Anxiety with NAÏVE BAYES Method. Journal of Applied Business and Technology, 2(2), 92–97.
Bouraya, S., & Belangour, A. (2024). Evaluating the Real-World Application Efficacy of MobileNet Models. International Journal of Engineering Trends and Technology, 72(9), 197–202. https://doi.org/10.14445/22315381/IJETT-V72I9P116
Dabwan, B. A., Olayah, F. A., Halawani, H. T., Mashraqi, A. M., Abdelrahman, Y. A., & Shamsan, A. F. (2023). Classification of Sign language Using VGG16 and VGG19. ISAS 2023 - 7th International Symposium on Innovative Approaches in Smart Technologies, Proceedings, January 2024, 1–6. https://doi.org/10.1109/ISAS60782.2023.10391673
Desnelita, Y., Cesar, M., Gustientiedina, G., Hajjah, A., & Putri, R. N. (2025). Implementation of Certainty Factor Method in Mental Health Diagnosis Expert System in Adolescents Aged 18-24 Years. Journal of Applied Business and Technology, 6(1), 42–51. https://doi.org/10.35145/jabt.v6i1.195
Dinata, C. P., & Marlim, Y. N. (2020). Application of Dynamic Systems Development Method in WEB-Based Promotion Media. Journal of Applied Business and Technology, 1(3), 196–204. https://doi.org/10.35145/jabt.v1i3.45
Gupta, J., Pathak, S., & Kumar, G. (2022). Deep Learning (CNN) and Transfer Learning: A Review. Journal of Physics: Conference Series, 2273(1), 10. https://doi.org/10.1088/1742-6596/2273/1/012029
Joe, F., & Joseph, J. (2021). Keras and TensorFlow: A Hands on Experience. In eras and TensorFlow (Issue August, pp. 85–111). https://doi.org/10.1007/978-3-030-66519-7
Kennedy, D., Kumar, N., & Kumar, V. (2022). Human Signature Verification Using Cnn With Tensorflow. International Journal of Creative Research Thoughts (IJCRT), 10(6), 125–137.
Maryamah, M., Pratama, M. A., Erfit, M. R., Farhani, N. M., & Hartono, I. A. (2023). Klasifikasi Abjad SIBI (Sistem Bahasa Isyarat Indonesia) menggunakan Mediapipe dengan Metode Deep Learning. Prosiding Seminar Nasional Sains Data, 3(1), 134–141. https://doi.org/10.33005/senada.v3i1.102
Mohsin, S., Salim, B. W., Mohamedsaeed, A. K., Ibrahim, B. F., & Zeebaree, S. R. M. (2024). American Sign Language Recognition Based on Transfer Learning Algorithms. International Journal of Intelligent Systems and Applications in Engineering, 12(5s), 390–399.
Nasien, D., Hasmil Adiya, M., Farkhan, M., Rahmadhani, U. S., & Samah, A. A. (2025). Automated Waste Classification Using YOLOv11: A Deep Learning Approach for Sustainable Recycling. Journal of Applied Business and Technology, 6(1), 68–74. https://doi.org/10.35145/jabt.v6i1.205
Nesiga, A., Shetty, S. S., Velapakam, M. M., Bailey, K., & Mishra, G. (2024). Research Article A Comparative Study of CNN Models Built with TensorFlow and Theano for Forest Fire Detection. International Journal of Computer Sciences and Engineering, 12(9), 1–8.
Neyshabur, B., Sedghi, H., & Zhang, C. (2020). What is being transferred in transfer learning? Advances in Neural Information Processing Systems, 2020-Decem(NeurIPS), 12.
Noon, A. (2023). Transfer Learning in Deep Neural Networks. Comic Bulletin of Business Management, 2(1), 205. https://doi.org/10.13140/RG.2.2.25635.63529
Novac, O. C., Chirodea, M. C., Novac, C. M., Bizon, N., Oproescu, M., Stan, O. P., & Gordan, C. E. (2022). Analysis of the Application Efficiency of TensorFlow and PyTorch in Convolutional Neural Network. Sensors, 22(8872), 23. https://doi.org/10.3390/s22228872
Pathak, A., Kumar, A., Priyam, P., Gupta, P., Chugh, G., Awasthi, K., Bidwan, R., & Jain, L. (2022). Real Time Sign Language Detection. International Journal for Modern Trends in Science and Technology, 8(01), 32–37. https://doi.org/10.22214/ijraset.2022.42961
Patil, V., Sujatha, C., Allagi, S., & Chikkoppa, B. (2022). A Deep Learning Framework for Real-Time Sign Language Recognition Based on Transfer Learning. International Journal of Engineering Trends and Technology, 70(6), 33–41. https://doi.org/10.14445/22315381/IJETT-V70I6P204
Prihandoko, P., Wulandari, N., & Eska, J. (2024). Implementation of Convolutional Neural Networks (CNN) for Crowd Counting in Shopping Mall Environments. International Journal of Information System & Technology, 8(4), 267–274.
Purnama, I., Renaldo, N., Panjaitan, H. P., Junaedi, T., Suhardjo, S., & Veronica, K. (2025). Exploring the Meaning of Employee Loyalty through the Lens of Organizational Behavior: A Phenomenological Study in Digital Start-up Firms. Journal of Applied Business and Technology, 6(1), 75–82. https://doi.org/10.35145/jabt.v6i1.226
Purwono, Ma’arif, A., Rahmaniar, W., Fathurrahman, H. I. K., Frisky, A. Z. K., & Haq, Q. M. U. (2022). Understanding of Convolutional Neural Network (CNN): A Review. International Journal of Robotics and Control Systems, 2(4), 739–748. https://doi.org/10.31763/ijrcs.v2i4.888
Saini, B., Venkatesh, D., Chaudhari, N., Shelake, T., Gite, S., & Pradhan, B. (2023). A comparative analysis of Indian sign language recognition using deep learning models. Forum for Linguistic Studies, 5(1), 197–222. https://doi.org/10.18063/FLS.V5I1.1617
Sari, M., & Jamzuri, E. R. (2025). Hand Sign Recognition of Indonesian Sign Language System ( SIBI ) Using Inception V3 Image Embedding and Random Forest. JURNAL RESTI, 9(2), 258–265.
Sathyanarayanan, S., & Tantri, B. R. (2024). Confusion Matrix-Based Performance Evaluation Metrics. Afr. J. Biomed. Res, 27(4s), 4023–4031. https://doi.org/10.53555/AJBR.v27i4S.4345
Setiawan, E. B., Darmawan, A., & Herdiana, B. (2024). STATIC SIGN LANGUAGE TRANSLATOR USING HAND GESTURE AND SPEECH RECOGNITION. Journal of Mathematical Sciences and Informatics, 4(2), 11–27. https://doi.org/10.46754/jmsi.2024.10.002
Suharjito, Thiracitta, N., & Gunawan, H. (2021). SIBI Sign Language Recognition Using Convolutional Neural Network Combined with Transfer Learning and non-trainable Parameters. Procedia Computer Science, 179(2019), 72–80. https://doi.org/10.1016/j.procs.2020.12.011
Susanto, E., Gustientiedina, G., & Siddik, M. (2024). Application of the Forward Chaining Method in Diagnosing Tomato Fever. Journal of Applied Business and Technology, 5(1), 41–50. https://doi.org/https://doi.org/10.35145/jabt.v5i1.143 1.0
Syulistyo, A. R., Hormansyah, D. S., & Saputra, P. Y. (2020). SIBI (Sistem Isyarat Bahasa Indonesia) translation using Convolutional Neural Network (CNN). IOP Conference Series: Materials Science and Engineering, 732(1), 6. https://doi.org/10.1088/1757-899X/732/1/012082
Wiraswendro, P. E., & Soetanto, H. (2022). Application of Random Forest Classifier Algorithm in Indonesian Sign Language System (SIBI) Detection System. Bit (Fakultas Teknologi Informasi Universitas Budi Luhur), 19(2), 75–81. https://doi.org/10.36080/bit.v19i2.2043
Copyright (c) 2025 Journal of Applied Business and Technology

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.